Jan 16

题目描述在这里

题目的意思就是给定一个正整数n(n不超过9*1014),要求我们给出有多少种方式,使得n能够表示为若干个连续正整数的和。比如n=9,那么有3种方式:2+3+4,4+5,9。

我们可以假定a+(a+1)+...+(b-1)+b=n,也就是(b+a)*(b-a+1)=2n。而(b+a)+(b-a+1)=2b+1是一个奇数,说明(b+a)和(b-a+1)具有不同的奇偶性,必然有一个是奇数。我们先把n当中所有素因数2从等式两边约去,同时考虑到(b+a)和(b-a+1)奇偶性不同,就可以把问题转化为n的奇数约数有多少个。由于这里的a和b是不受n的限制的变量,我们只要得到一个奇数约数必然可以求出相应的a和b(注意到(b+a)-(b-a+1)=2a-1是一个正整数,所以(b+a)>(b-a+1)。)。比如n=12,给出一个奇数约数3,那么a=3,b=5;给出一个奇数约数1,那么a=b=12。

现在我们所要做的就是对n进行质因数分解,然后用各个素因数的指数求解。显然,O(n1/2)的算法是不够的。我们要具体考察一下素因数分解的过程。如果用[2,L]以内的素数进行分解,那么约去所有因数后,最后剩下的n'一定不含有该范围的任何质数,也就是说n'如果小于L2,那么一定是素数;如果大于L2,那么只需要判断n'到底是不是素数。我们注意到,如果n'不是素数且只含有两个素因数,我们是可以分析出结果的,也就是说,我们需要排除n'含有三个素因数的情况。注意到(105)3略大于9*1014,我们就找到了方法。

先预处理出[2,105]范围内所有的素数,并且对n进行分解。然后按照上面的方法对分解的结果n'进行讨论,关于判断n'是否是素数,我们可以用Miller-Rabin素性测试来解决,Java中可以借助BigInteger的isProbablePrime来判断。整个算法的复杂度约为O(n1/3),下面就是代码,UVa上面的提交结果是运行了0.556s: 

import java.math.*;
import java.util.*;

class Main {
  private final static int MAXP = 100000;
  private final static long LIMIT = (long)MAXP*MAXP;
  private static int[] primes;

  public static void main(String[] args) {
    Scanner in = new Scanner(System.in);
    getprimes();
    while (in.hasNextLong()) {
      long n = in.nextLong();
      System.out.println(solve(n));
    }
  }

  private static int solve(long n) {
    if (n==0) return 0;
    while ((n&1)==0) n >>= 1;
    int ans = 1;
    for (int i = 0; i<primes.length; i++) {
      long t = primes[i];
      if (t*t>n) break;
      int cnt = 0;
      while (n%primes[i]==0) {
        n /= primes[i];
        cnt++;
      }
      ans *= cnt+1;
    }
    if (n==1);
    else if (n<LIMIT || BigInteger.valueOf(n).isProbablePrime(16))
      ans *= 2;
    else {
      long tmp = (long)(Math.sqrt(n)+1e-6);
      if (tmp*tmp==n) ans *= 3;
      else ans *= 4;
    }
    return ans;
  }

  private static void getprimes() {
    boolean[] isp = new boolean[MAXP+1];
    int size = 0,ptr = 0;
    for (int i = 2; i<=MAXP; i++)
      if (!isp[i]) {
        size++;
        for (int j = 2*i; j<=MAXP; j += i)
          isp[j] = true;
      }
    primes = new int[size];
    for (int i = 2; i<=MAXP; i++)
      if (!isp[i]) primes[ptr++] = i;
  }
}
Jan 12

阶乘的最后一位非零位就是n!的数值中从右到左第一个非零的数字。比如,7!=5040,那么7!的最后一位非零位就是4。一个粗略的想法是每10个数字的末尾数相乘是一个定植,那么n个连续的自然数也可以类似地转化,接着就可以求出。这个想法无疑是错误的,因为注意到2*5=10,而12*15=180,两个结果的末位非零数并不相等,所以末尾数相乘不是10个数字为一个循环。

如果要求n!末尾0的个数,就是一个非常简单的问题。因为10=2*5,我们只要求出2和5在n!的标准分解式中出现了多少次,就可以求出末尾0的个数。而又由于2出现的次数一定比5多,所以,只需要求出5出现的次数。例如,n=2005,那么5出现的次数就是401+80+16+3=500个,也就是2005!的末尾有500个0。

现在我们对n!的情况有了一个大概的认识。简单点来说,n!=2a5bc,这里c是所有不包含2和5的因数的乘积。显然,最后一位非零位取决于2a-bc的最后一位。我们只要想办法求出c,n!的非零位就很容易了。注意到如果一个数字的末位如果是3,5,7,9,那么一定是c的组成部分。但是这些数字还不够,因为当2和5被提取之后,又产生了新的末位为3,5,7,9的数字,所以我们要逐次的提取2和5这两个因数,然后算出每种情况下末位为3,5,7,9的数字的数量。

回忆求2这个因数的办法,就是逐次的除以2来缩小规模。例如,当n=2005时,只含有一个因数2的数一共有1002个,含有两个因数2的数字一共有501个,……。也就是一种递归的思想,不过这里是尾递归,可以消除。下面关于如何求出末位为3,5,7,9的数字的方法就不再赘述了,直接给出代码,相信还是能够理解的。

//co2,co3,co5,co7,co9分别表示了2,3,5,7,9的个数。
static int co2,co3,co5,co7,co9;

void calc(int n) {
  if (n<=1) return;
  for (int i = n; i>0; i /= 5) {
    int p = i/10,q = i%10;
    co3 = p+(int)(q>=3);
    co5 = p+(int)(q>=5);
    co7 = p+(int)(q>=7);
    co9 = p+(int)(q>=9);
  }
  co2 += n/2;
  calc(n/2);
}

至此,问题转化为了2,3,5,7,9之间幂的关系,注意到32n=9n,而$3^n\equiv 7^{3n}\pmod{10}$,所以又可以转化为3的幂,下面的过程就简单多了。

其实求n!的最后一位非零位还有其它的方法,但其实也不外乎利用递归的思想提取因数,来达到化大为小的目的。有兴趣的可以去Google一下,可以找到很多资料。