Jan 17

完整的题目描述在这里

题目给出了n和m,要求出满足最大公约数(x1,x2,...,xn,m)=1且xi不超过m的这样的x1,...,xn的组数。xi都是正整数。

如果n=1,那就是求欧拉函数$\varphi(m)$。我们可以联想其形式:$\varphi(m)=m\prod_{p|m}(1-\frac{1}{p})$。那么当n>1时我们也来类比一下相对应的公式。

$\varphi(m,n)$表示题目中所要求的答案。我们发现,当m为素数时,$\varphi(m,n)=m^n-1$。这是显然的,因为除了(m,m,...,m,m)这一组数字以外,其余的都是可行的解。那么m不为素数时,我们把m的各个素因数分开考虑。如果某个素因数被n个数所共有,那么一共就少了$m^n\frac{1}{p^n}$种方案,考察m所有的素因数,我们得到$\varphi(m,n)=m^n\prod_{p|m}(1-\frac{1}{p^n})$

至此,问题解决。

Jan 16

题目描述在这里

题目的意思就是给定一个正整数n(n不超过9*1014),要求我们给出有多少种方式,使得n能够表示为若干个连续正整数的和。比如n=9,那么有3种方式:2+3+4,4+5,9。

我们可以假定a+(a+1)+...+(b-1)+b=n,也就是(b+a)*(b-a+1)=2n。而(b+a)+(b-a+1)=2b+1是一个奇数,说明(b+a)和(b-a+1)具有不同的奇偶性,必然有一个是奇数。我们先把n当中所有素因数2从等式两边约去,同时考虑到(b+a)和(b-a+1)奇偶性不同,就可以把问题转化为n的奇数约数有多少个。由于这里的a和b是不受n的限制的变量,我们只要得到一个奇数约数必然可以求出相应的a和b(注意到(b+a)-(b-a+1)=2a-1是一个正整数,所以(b+a)>(b-a+1)。)。比如n=12,给出一个奇数约数3,那么a=3,b=5;给出一个奇数约数1,那么a=b=12。

现在我们所要做的就是对n进行质因数分解,然后用各个素因数的指数求解。显然,O(n1/2)的算法是不够的。我们要具体考察一下素因数分解的过程。如果用[2,L]以内的素数进行分解,那么约去所有因数后,最后剩下的n'一定不含有该范围的任何质数,也就是说n'如果小于L2,那么一定是素数;如果大于L2,那么只需要判断n'到底是不是素数。我们注意到,如果n'不是素数且只含有两个素因数,我们是可以分析出结果的,也就是说,我们需要排除n'含有三个素因数的情况。注意到(105)3略大于9*1014,我们就找到了方法。

先预处理出[2,105]范围内所有的素数,并且对n进行分解。然后按照上面的方法对分解的结果n'进行讨论,关于判断n'是否是素数,我们可以用Miller-Rabin素性测试来解决,Java中可以借助BigInteger的isProbablePrime来判断。整个算法的复杂度约为O(n1/3),下面就是代码,UVa上面的提交结果是运行了0.556s: 

import java.math.*;
import java.util.*;

class Main {
  private final static int MAXP = 100000;
  private final static long LIMIT = (long)MAXP*MAXP;
  private static int[] primes;

  public static void main(String[] args) {
    Scanner in = new Scanner(System.in);
    getprimes();
    while (in.hasNextLong()) {
      long n = in.nextLong();
      System.out.println(solve(n));
    }
  }

  private static int solve(long n) {
    if (n==0) return 0;
    while ((n&1)==0) n >>= 1;
    int ans = 1;
    for (int i = 0; i<primes.length; i++) {
      long t = primes[i];
      if (t*t>n) break;
      int cnt = 0;
      while (n%primes[i]==0) {
        n /= primes[i];
        cnt++;
      }
      ans *= cnt+1;
    }
    if (n==1);
    else if (n<LIMIT || BigInteger.valueOf(n).isProbablePrime(16))
      ans *= 2;
    else {
      long tmp = (long)(Math.sqrt(n)+1e-6);
      if (tmp*tmp==n) ans *= 3;
      else ans *= 4;
    }
    return ans;
  }

  private static void getprimes() {
    boolean[] isp = new boolean[MAXP+1];
    int size = 0,ptr = 0;
    for (int i = 2; i<=MAXP; i++)
      if (!isp[i]) {
        size++;
        for (int j = 2*i; j<=MAXP; j += i)
          isp[j] = true;
      }
    primes = new int[size];
    for (int i = 2; i<=MAXP; i++)
      if (!isp[i]) primes[ptr++] = i;
  }
}
Jan 15

SWERC2008主页在这里:SWERC 2008 - Nuremberg。这套题目还是一贯的欧洲赛区的风格,题目大多数都可以做。

  • Bring Your Own Horse:题目很长很烦,从最后的Scoreboard就可以看出来很多人因为题目描述的原因没有看出来题目的意思。题目的要求很简单,就是先求一个最小生成树,然后对于每一个询问,都用一次BFS来找到生成树中两点之间路径当中最长的边。代码量并不大,但是最快的提交也用了66分钟,完全是题目描述的问题。
  • First Knight:一个非常明显的高斯消元法,如果在中国赛区应该算是容易的。
  • Postal Charges:一个别出心裁的降低复杂度的题目。巧妙的用类似桶排序的方法先进行分类,然后考虑到只是进行曼哈顿距离的计算,所以可以分块求解。每一个块中不同的元素都已经预处理出到自身所在块的左下角的距离,使用乘法原理就可以解决。
    double calc() {
      double sum = 0.0; //总长度
      int co = 0;       //路线数量
      for (int i = 1; i<MAX; i++)
        for (int j = 1; j<MAX; j++) //i,j枚举当前的块
          for (int k = 0; k<i; k++)
            for (int l = 0; l<j; l++) { //k,l枚举当前快之前的块
              //l[i][j]表示(i,j)这个块里面所有点的该块左下角的距离之和
              //c[i][j]表示每个块中含有元素的个数
              sum += l[i][j]*c[k][l]-l[k][l]*c[i][j]+(i-k+j-l)*c[i][j]*c[k][l]; //乘法原理
              co += c[i][j]*c[k][l]; //求和
            }
      return sum/co;
    }
  • Randomly-priced Tickets:题目给定了一个无向图。首先用Floyd求出两点之间的距离,然后就是要求在一条定长的路线上分配初始的预算。这个问题用动态规划很容易解决。设p(i,j)表示长度为i的路线,预算为j,能够通过的可能性,那么$p(i,j)=\sum_{k\geq 0,j-k\leq R}\frac{p(i-1,k)}{R}$,边界条件是i=0时p(i,j)=1。如果一个询问的两点之间长度为d,预算为b,直接输出p(d,b)就可以了。
  • The Game:博弈问题,用最大最小搜索,Alpha-Beta剪枝应该会有好的效果。
  • The Merchant Guild:动态规划。首先要确定方案合法的充要条件,就是最多不超过i个商人被分配到了最后的n-i+1个位置。这样令f(k,m)为在k,...,n之间还有m个空位时的分配方案数,s(k)表示前k个位置一共有多少本地商人,g(k,m)=m+1-s(k-1)+s(k-2),那么
    $\displaystyle f(k,m)=\sum_{i=0}^{g(k,m)}{{k-s(k-1)+m}\choose {g(k,m)-i}}f(k-1,i)$
  • Toll Road:分治。题目所给的是一个树,只要DFS一次,找出最大权值的子树就可以了,用分治法会很轻松。
  • Top Secret:矩阵乘法。我们依据题意构造出矩阵之后进行计算,由于这是一个循环矩阵,可以把O(n3)的算法优化至O(n2)。
  • Transcribed Books:数论题。注意到对于所有的序列,$N|\sum_{i=1}^9 a_i -a_{10}$。那么所有序列的$\sum_{i=1}^9 a_i-a_{10}$的最大公约数在有解的情况下就是问题的答案。
  • Wizards:数学题。详细情况请参见判断方程是否有重根